您好,欢迎来到诺达名师!
客服热线:18898361497

当前位置: 首页 > 职业素养 > 办公技能 > 大数据挖掘工具:SPSS Modeler入门与提高

傅一航

大数据挖掘工具:SPSS Modeler入门与提高

傅一航 / 数据分析和数据挖掘讲师

课程价格: 具体课酬和讲师商量确定

常驻地: 深圳

预定该课 下载课纲

咨 / 询 / 热 / 线 18898361497

在线咨询

课程背景

本数据分析与挖掘系列课程包括三个等级的课程: 1、基础课程,专注于经营数据的统计与数据分析,适合于一般业务部门要求的数据统计与分析,内容系统且全面,由浅入深,使用工具为Excel 2010版本以上。 2、中级课程,专注于行业数据分析与数据挖掘,适合于数据分析部、业务支撑部等对数据分析与挖掘要求较高的部门,使用专业数据分析与挖掘工具SPSS v19版本以上。 3、高级课程,专注于较深入的数据挖掘技术,包括挖掘模型原理介绍,数据建模,挖掘算法,适合于大数据系统开发及数据分析专业人士,需要有一定的数学基础(统计与概率),使用数据流挖掘工具Modeler 14.1版本以上。 本课程为高级课程,面向数据分析部等专门负责数据分析与挖掘的人士。 本课程培训覆盖以下内容: 1、数据挖掘标准流程。 2、数据挖掘探索性分析。 3、数据挖掘模型原理。

课程目标

1、掌握数据挖掘的基本过程和步骤。 2、掌握数据挖掘的预处理方法,探索数据间的相关性,为建模打下基础。 3、理解数据挖掘的常见模型,原理及适用场景。 4、熟练掌握Modeler基本操作,能利用Modeler进行数据挖掘。

课程大纲

【课程大纲】

IBM SPPS Modeler是一个数据流处理工具,适用于数据探索与数据挖掘,包括数据预处理、数据探索、数据可视化、数据建模、数据模型优化。


**部分:数据挖掘基础知识(基础,决定你的高度)

1、 数据挖掘工具简介

Ø EXCEL规划求解(数据建模工具)

Ø SAS统计分析系统

Ø SPSS统计产品与服务解决方案

2、 数据挖掘概述

案例:宜家IKE如何**数据挖掘来降低营销成本提升利润?

3、 数据挖掘的标准流程(CRISP-DM)

Ø 商业理解

Ø 数据准备

Ø 数据理解

Ø 模型建立

Ø 模型评估

Ø 模型应用

案例:通信客户流失分析及预警模型

4、 数据建模示例

案例:客户匹配度建模—找到你的准客户

第二部分:数据理解与数据准备(Modeler实操)

1、 数据挖掘处理的一般过程

Ø 数据源à数据理解à数据准备à探索分析à数据建模à模型评估

2、 数据读入

Ø 读入文本文件

Ø 读入Excel电子表格

Ø 读入SPSS格式文件

Ø 读入数据库数据

3、 数据集成

Ø 变量合并(增加变量)

Ø 数据追加(添加记录)

4、 数据理解

Ø 取值范围限定

Ø 重复数据处理

Ø 缺失值处理

Ø 无效值处理

Ø 离群点和极端值的修正

Ø 数据质量评估

5、 数据准备:数据处理

Ø 数据筛选:数据抽样/选择(减少样本数量)

Ø 数据精简:数据分段/离散化(减少变量的取值)

Ø 数据平衡:正反样本比例均衡

Ø 其它:排序、分类汇总

6、 数据准备:变量处理

Ø 变量变换:原变量值更新

Ø 变量派生:生成新的变量

Ø 变量精简:降维,减少变量个数

7、 基本分析

Ø 单变量:数据基本描述分析

Ø 双变量:相关性分析

Ø 变量精简:特征选择、因子分析

8、 特征选择

Ø 特征选择方法:选择重要变量,剔除不重要的变量

Ø 从变量本身考虑

Ø 从输入变量与目标变量的相关性考虑

9、 因子分析(主成分分析)

Ø 因子分析的原理

Ø 因子个数如何选择

Ø 如何解读因子含义

案例:提取影响电信客户流失的主成分分析


第三部分:因素影响分析(特征重要性分析)

问题:如何判断一个因素对另一个因素有影响?

比如营销费用是否会影响销售额?产品价格是否会影响销量?产品的陈列位置是否会影响销量?

1、 常用特征重要性分析的方法

Ø 特征选择(减少变量个数):相关分析、方差分析、卡方检验

Ø 因子分析(减少变量个数):主成分分析

Ø 确定变量个数参考表

2、 相关分析(数值 数值,相关程度计算)

问题:这两个属性是否会相互影响?影响程度大吗?

Ø 相关分析概述

Ø 相关系数计算公式

Ø 相关性假设检验

案例:通信基本费用与开通月数的相关分析

3、 方差分析(分类 数值,影响因素分析)

问题:哪些才是影响销量的关键因素?

Ø 方差分析原理

Ø 方差分析的步骤

Ø 方差分析适用场景

案例:开通月数对客户流失的影响分析

4、 列联分析(分类 分类,影响因素分析)

Ø 列联表的原理

Ø 卡方检验的步骤

Ø 列联表分析的适用场景

案例:套餐类型对对客户流失的影响分析

第四部分:分类预测模型分析

1、 分类概述

Ø 分类的基本过程

Ø 常见分类预测模型

2、 逻辑回归分析模型

问题:如果评估用户是否购买产品的概率?

Ø 逻辑回归分析

Ø 逻辑回归的原理

案例:客户购买预测分析(二元逻辑回归)

3、 决策树分类

问题:如何提取客户流失者、拖欠货款者的特征?如何预测其流失的概率?

Ø 决策树分类的原理

Ø 决策树的三个关键问题

Ø 决策树算法

Ø 如何评估分类模型的性能(查准率、查全率)

案例:识别银行欠货风险,提取欠货者的特征

案例:客户流失预警与客户挽留模型

4、 神经网络

Ø 神经网络概述

Ø 神经元工作原理

Ø 神经网络的建立步骤

Ø B-P反向传播网络(MLP)

Ø 径向基函数网络(RBF)

5、 支持向量机

Ø SVM基本原理

Ø 维灾难与核函数

6、 朴素贝叶斯分类

Ø 条件概率

Ø 朴素贝叶斯

Ø TAN贝叶斯网络

Ø 马尔科夫毯网络


第五部分:市场细分与客户细分

1、 客户细分常用方法

2、 聚类分析(Clustering)

问题:如何对市场进行细分?如何提取客户特征,从而对产品进行市场定位?

Ø 聚类方法原理介绍

Ø 聚类方法适用场景

Ø 如何细分客户群,并提取出客户群的特征?

Ø K均值聚类(快速聚类)

Ø 两步聚类

案例:移动三大品牌细分市场合适吗?

演练:宝洁公司如何选择新产品试销区域?

3、 RFM模型分析

Ø RFM模型,更深入了解你的客户价值

Ø RFM模型与市场策略

Ø RFM模型与活跃度

案例:淘宝客户价值评估与促销名单



第六部分:其他市场营销分析方法

1、 关联分析(Association)

问题:购买面包的人是否也会购买牛奶?他们同时购买哪些产品?

Ø 关联规则原理介绍

Ø 关联规则适用场景:交叉销售、捆绑营销、产品布局

案例:超市商品交叉销售与布局优化(关联分析)


结束:课程总结与问题答疑。

上一篇: 大数据模型与数据挖掘应用实战 下一篇:大数据分析与数据挖掘能力提升实战

下载课纲

X
""